Next-Generation Digital Television Terrestrial Broadcasting Systems

Author: Eng. Ernesto Fontes Pupo.
11/08/2016
Mail: fontes@lacetel.cu
Outline

• Introduction
• Brief review of the first-generation DTTB standards
• Current status of the second-generation DTTB systems
• Technical challenges at 2013
• State of the Art - Technological Advances
• Next-Generation: NGB-W (China)/ ATSC 3.0 (USA)
• Conclusions
Introduction

“The future of television is to stop thinking of television as television.”

- 1985
Nicholas Negroponte
Introduction

Internet

TVD

+ 20 year of evolution

Technological Evolution

5G

4G LTE

Wi-Fi

Super Wi-Fi
Evolution of the DTTB standards

First-generation
- 1995: ATSC
- 1997: DVB-T
- 1999: ISDB-T
- 2006: DTMB

Second-generation
- 2009: DVB-T2
- 2010: ATSC-M/H
- 2015: ISDB-Tmm
- 2015: DTMB-A

Next-generation
World Distribution

- **DVB-T**
- **DVB-T2**
- **ATSC**
- **ISDB-T**
- **DTMB**
Technical challenges at 2013

<table>
<thead>
<tr>
<th>OFDM-Based tx</th>
<th>Mod. & CH coding</th>
<th>MIMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-OFDM</td>
<td>• higher order mod. Schemes (QAM)</td>
<td>• large-scale MIMO</td>
</tr>
<tr>
<td>TDS-OFDM</td>
<td>– UW-OFDM</td>
<td>• low-complexity implementation algorithms</td>
</tr>
<tr>
<td></td>
<td>– DPN-OFDM</td>
<td>– Ant. placement</td>
</tr>
<tr>
<td></td>
<td>– TFT-OFDM</td>
<td>– Signal detection algorithms</td>
</tr>
<tr>
<td></td>
<td>➢ PAPR reduction</td>
<td>– channel estimation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technical challenges at 2013

<table>
<thead>
<tr>
<th>Return Channel</th>
<th>Wireless localization</th>
<th>Multi-service</th>
</tr>
</thead>
</table>
| • DVB-RCT (60 km)
 − OFDMA (↑PARP)
 − SC-FDMA (↓PARP)
 − TDS-FDMA
 • WLAN or 2G/3G | • GNSS, GPS
 − accuracy: 3–10m
 • DTTB-based
 − accuracy: ↓1m
 ➢ Rx is located near one particular Tx
 ➢ non-line-of-sight
 • Convergence of GPS- and DTTB | • Fixed and mobile Rx
 − Power consumption
 • T/FDM (DVB-T2)
 • BST-OFDM (ISDB-Tmm)
 • layered super-frame structure/TDM (DTMB) |
What about now?
Non-Uniform Constellation (NUC)

1 Dimension

- more than 1 dB gain respect to a system which uses UC.

2 Dimension

64 condensed points
Layered Division Multiplexing (LDM)

QPSK

UL

LL

LDM

Multilayer Signal (Upper + Lower Layers)

Upper Layer (UL)

Lower Layer (LL)

Injection Level

Noise

NUC 256 QAM
Channel Capacity (6MHz)

- **Next-Gen.**
 - Capacity: $C = 1.98$ Mbps
 - SNR: -6 dB C/N
 - Efficiency: 1.56 Mbps

- **DVB-T2**
 - Capacity: $C = 66$ Mbps
 - SNR: 33 dB C/N
 - Efficiency: 62.19 Mbps

Low Capacity, Robust

High Capacity, Less Robust
Next-Generation DTTB Systems

NGB-W (China)

ATSC 3.0 (USA)
<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEC</td>
<td>BCH/LDPC</td>
</tr>
<tr>
<td>BICM</td>
<td>YES</td>
</tr>
<tr>
<td>Constellation</td>
<td>QPSK; NUC 16QAM, 64QAM, 256QAM, 1024QAM</td>
</tr>
<tr>
<td>Transmission Mode</td>
<td>SISO/MISO/MIMO</td>
</tr>
<tr>
<td>FFT size</td>
<td>4K, 8K, 16K, 32K (with PAPR)</td>
</tr>
<tr>
<td>Frame Duration (ms)</td>
<td>≤ 250</td>
</tr>
<tr>
<td>PLP</td>
<td>YES</td>
</tr>
<tr>
<td>Dedicate Return Ch.</td>
<td>YES</td>
</tr>
<tr>
<td>Bitrate Max. (8 MHz)</td>
<td>62 Mbps (SISO), 122 Mbps (MIMO)</td>
</tr>
</tbody>
</table>
NGB-W vs DVB-T2 (Channel Capacity)

<table>
<thead>
<tr>
<th>Performance index (BW = 8 MHz)</th>
<th>NGB-W</th>
<th>DVB-T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximal Transmission bitrate (Mbps)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SISO pattern</td>
<td>62</td>
<td>50.2</td>
</tr>
<tr>
<td>MISO pattern</td>
<td>122</td>
<td>NA</td>
</tr>
<tr>
<td>Maximal translational speed (km/h)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>329.6</td>
<td>301.3</td>
</tr>
<tr>
<td>Maximal single frequency network radius (km)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>184.3</td>
<td>159.6</td>
</tr>
<tr>
<td>Physical overview</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>FEC</td>
<td>BCH; CRC + LDPC</td>
<td></td>
</tr>
<tr>
<td>BICM</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Constellation</td>
<td>QPSK; NUC 16, 64, 256, 1024, 4096 QAM</td>
<td></td>
</tr>
<tr>
<td>Transmission Mode</td>
<td>SISO/MISO/MIMO and Channel Bonding</td>
<td></td>
</tr>
<tr>
<td>FFT size</td>
<td>8K, 16K, 32K (with PAPR)</td>
<td></td>
</tr>
<tr>
<td>PLP number</td>
<td>from 1 up to 64</td>
<td></td>
</tr>
<tr>
<td>PLP multiplex</td>
<td>TDM, FDM, TFDM, LDM</td>
<td></td>
</tr>
<tr>
<td>Dedicate Return Ch.</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Bitrate Max. (6/8 MHz)</td>
<td>57/78.5 Mbps (SISO), 114/157 Mbps (MIMO)</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

• These Technological advances will revolve the actual DTV

• These Technological advances transcend the DTV limits.

• Are we in conditions to be alien to these Technological evolution?
Thank You!
First-generation DTTB standards

- **1995**
 - **ATSC**
 - Single-Carrier
 - Outdoor fixed Rx
 - 6 MHz
 - 19.39 Mb/s

- **1997**
 - **DVB-T**
 - C-OFDM
 - Out/Indoor, Mobile Portable Rx
 - 6, 7, 8 MHz
 - 4.98-31.67 Mb/s

- **1999**
 - **ISDB-T**
 - BST-OFDM
 - Out/Indoor, Mobile Portable Rx
 - 6, 7, 8 MHz
 - 3.65–23.23 Mb/s

- **2006**
 - **DTMB**
 - BST-OFDM
 - Out/Indoor, Mobile Portable Rx
 - 6, 7, 8 MHz
 - 4.81–32.49 Mb/s

- **2011**
 - **ITU**
 - TDS-OFDM
 - LDPC-BCH
 - Out/Indoor, Mobile Portable Rx
 - 6, 7, 8 MHz
 - 4.81–32.49 Mb/s
Second-generation DTTB systems

- **DVB-T2 (2009)**
 - LDPC-BCH
 - BICM
 - ▲30% Spectral efficiency
 - Constell. rotation
 - PAPR reduction
 - PLP

- **ATSC-M/H (2010)**
 - Backward compatibility
 - Out/Indoor, Mobile portable Rx
 - Wireless localization

- **ISDB-Tmm (2010)**
 - Compatible with ISDB-T
 - Multi-media materials
 - Variable tx BW (13-33 segments)
 - partial reception

- **DTMB-A (2015)**
 - Gray-APSK
 - BICM
 - Signal Space Diversity (SSD)
 - Multi-service
 - Wireless localization
Technical challenges at 2013

<table>
<thead>
<tr>
<th>OFDM-Based tx</th>
<th>Mod. & CH coding</th>
<th>MIMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>• C-OFDM</td>
<td>• higher order mod.</td>
<td>• large-scale MIMO</td>
</tr>
<tr>
<td>• TDS-OFDM</td>
<td>• coded modulation</td>
<td>• low-complexity</td>
</tr>
<tr>
<td>• PAPR reduction</td>
<td>• Shannon limit</td>
<td>implementation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>algorithms</td>
</tr>
<tr>
<td>Return Channel</td>
<td>Wireless localizat.</td>
<td>Multi-service</td>
</tr>
<tr>
<td>• DVB-RCT (60 km)</td>
<td>• GNSS, GPS</td>
<td>• Fixed and mobile</td>
</tr>
<tr>
<td></td>
<td>– accuracy: 3–10m</td>
<td>Reception</td>
</tr>
<tr>
<td></td>
<td>• DTTB-based</td>
<td>• Power consumption</td>
</tr>
<tr>
<td></td>
<td>– accuracy: ↓1m</td>
<td></td>
</tr>
</tbody>
</table>