PursuingExcellence

ALL-STANDARD-ALL-BAND POLAR MODULATOR FOR DIGITAL TELEVISION BROADCASTING

Martínez Alonso Abdel

Matsuzawa and Okada Laboratories Tokyo Institute of Technology

2015/12/12

Outline

TDKYD TIECH PursuingExcellence

- TxMER degradation
- Direct Polar Modulator Design
- Conclusion

Integrated All-standard Modulator hasn't been reported yet.

Matsuzawa

& Okada Lab.

UHDTV Broadcasting Roadmap

Outline

FOKYO TIECH Pursuing Excellence

Motivation

- TxMER degradation
 - Direct Polar Modulator Design
 - Conclusion

BER over AWGN

5

Digital Television Evolution

TOKYO TIECH Pursuing Excellence

Standard	Modula	Data Rate [Mb/s]	BW [MHz]	Required C/N [dB] (spec)	TxMER [dB] (typical)	
DVB-S	QPSK	SC	45.4	36	> 8.4	> 38
DVB-S2	8PSK	SC	65	36	> 7.9	> 38
DVB-S2X	16APSK	SC	89	36	> 12	> 42
DVB-C	64QAM	SC	38.1	8	> 26	> 40
DVB-C2	4096QAM	OFDM	79.5	8	> 34.8	> 40
DTMB	64QAM	OFDM	24.3	8	> 14.9	> 40
DTMB-A	256- APSK	OFDM	49.6	8	> 22.8	-
ISDBT-T/Tb	64QAM	OFDM	23.2	6	> 22	> 40
8K Super Hi- Vision	4096QAM	OFDM	91.8	6	> 35.7*	> 45*

*From "Super Hi-Vision Terrestrial Transmission Test". NHK STRL. 2013.

2015/12/12

TxMER degradation

Direct Conversion Modulator

8

1

TECH **Pursuing Excellence**

ΤΟΚ

Direct Polar Modulator

TECH

Pursuing Excellence

ΤΟΚΥΟ

2015/12/12

Direct Polar Modulator

Advantages:

- No I/Q mismatch
- Low Phase Noise
- Low LO leakage/pulling _
- Supports effortless digital modulation
- Better scaling with CMOS technology
 <u>Challenges:</u>
- 50 MHz 2660 MHz band operation
- DAC errors becomes critical
- Spurious performance

TxMER

Outline

TOKYO TIECH PursuingExcellence

- Motivation
- TxMER degradation
- Direct Polar Modulator Design
- Conclusion

12

TEFH **Pursuing Excellence**

ΤΟΚΥ

Π

TOKYO TIECH Pursuing Excellence

Classic Digital Mapping DDFS:

$DDFS_{out} = A^*sin(\omega t + \theta) [2]$

2015/12/12

Matsuzawa & Okada Lab.

14

Pursuing Excellence

ΓΟΚ

Phase Accumulator (PA 2 bits) :

15

ΤΟΚ

Π

PursuingExcellence

Floorplan view (CMOS 65nm)

460 µm

M.A.ABDEL 15D14048

16

D

Pursuing Excellence

ΤΟΚ

TOKYO TIECH Pursuing Excellence

Performance Comparison:

Reference	Arch.	т	Ρ	A	Technology	Sampling Rate (GS/s)	Area (mm²)	Power (mW)
FF DDFS	Digital Mapping	24	14	10	CMOS 65 nm	3.9	0.114	238
CDPL DDFS	Digital Mapping	24	14	10	CMOS 65 nm	6.8	0.105	145

CDPL-DDFS can achieve a higher sampling rate and lower power consumption when compared with a Flip-Flop approach.

M.A.ABDEL 15D14048

18

Pursuing Excellence

ΓΠΚ

19 TOKYOTIECH PursuingExcellence

Performance Comparison:

Reference	Arch.	T (PA bits)	A (DAC bits)	CMOS Technology	Sampling Rate (GS/s)	Area (mm²)	PE (W/GS/s)	SFDR (dBc)
JSSC'04	Digital Mapping	32	9	0.35 µm	0.8	1.47	0.217	55
*APCCAS '08	Nonlinear DAC	12	7	90 nm	4	N/A	0.1155	44
VLSIC'09	Nonlinear DAC	24	11	90 nm	1.3	2	0.26	52
*TCSI'11 (Without DAC)	Digital Mapping	24	9	0.13 µm	1.4	0.006	0.005	62
ISSCC'14	Nonlinear DAC	32	9	55 nm	2	0.1	0.065	55.1
This Work (Without DAC)	Digital Mapping	24	10	65 nm	6.8	0.1	0.022	45.3

2015/12/12

RF-DAC Design:

20

ΤΟΚ

Pursuing Excellence

2015/12/12

RF-DAC Design

Interleaved DAC architecture:

21

ΤΟΚ

Π

Pursuing Excellence

Outline

TOKYO TIECH Pursuing Excellence

- Motivation
- TxMER degradation
- Direct Polar Modulator Design
- Conclusion

- 1. 4K and 8K ultra-high-definition video technology is already making inroads into broadcasting.
- 2. Integrated All-Standard-All-Band Modulator is proposed:
 - High TxMER Direct Polar Modulator (TxMER > 45 dB).
 - Complementary Dual-Phase Latch-Based DDFS ($F_{out} = 2.7$ GHz).
 - Interleaving RF-DAC. (F_{out} = 2.7 GHz).

2015/12/12

References

- [1] D. ANALOG. "3.5 GSPS Direct Digital Synthesizer with 12-Bit DAC", 2014.
- [2] G. Ken. "DDS simplifies polar modulation", EDN Network, 2004.
- [3] D. ANALOG. "A Technical Tutorial on Digital Signal Synthesis". Web site: <u>http://www.analog.com</u>, 1999.
- [4] M. Shin, *et al.*, "The feasibility Study on the 4K-UHD Satellite Broadcasting Service in Ka-Band", ICCE, 2013.
- [5] European Telecommunications Standards Institute. EN 302 755 V1.3.1, 2012.
- [6] Digital Broadcasting Experts Group. ABNT NBR 15601, 2009.
- [7] Advanced Television Systems Committee. ATSC Digital Television Standard, 2007.

ΤΟΚ

PursuingExcellence

ALL-STANDARD-ALL-BAND POLAR MODULATOR FOR DIGITAL TELEVISION BROADCASTING

Martínez Alonso Abdel

Matsuzawa and Okada Laboratories Tokyo Institute of Technology

2015/12/12