

DTMB Non-Uniform Constellations design through PSO algorithm

Authors: Eng. Ernesto Fontes Pupo. MSc. Reinier Diaz Hernández. Eng. Yoania Acosta Cintado.

2017

- Introduction
- Brief description of the Uniform Constellations, Non-Uniform Constellations and Capacity equation.
- Description of the Particle Swarm Optimization algorithm.
- Results of the optimization process.
- Conclusions

Introducción

- In 1974, Foschini proposed Non-Uniform Constellations, which minimize symbol error rates over an AWGN channel.
- March 2016, Non-Uniform Constellations for ATSC 3.0.
- November 2017, Proposal of Non-Uniform Constellations for DTMB.

GEBEL RESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE **Uniform Constellations & Non-Uniform** Constellations **1D-NUC**

2D-NUC

X: Symbol alphabet.

μ: Constellation shape. C_B: Capacity. $C_{B}=f(X, \mu, SNR)$

Gap from Shannon of the UC

Gap from Shannon of the UC

$$\mathbb{E}_{X_{l}^{\prime} \in X_{b}^{m}} \mathbb{E}_{A} \mathbb{E}_{A}$$

RESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE Particle Swarm Optimization PSO

- Developed by Kennedy and Eberhart 1995.
- Metaheuristic Algorithms.
- Based on the paradigm of swarm intelligence.
- Inspired in the social behavior of animals, like the swarm of fishes and birds.
- Simpler and Powerful optimization algorithm.

Initialization of the PSO algorithm

- Population size
- Positions
- Velocities
- Iterations

BUILD SCENE	STOP		
NumDims:	3D 2		
Population 0 size: 100			
Population 1 size: 200			
population 0			
population 1			

Particle Swarm Optimization Visualization

Cognitive Component
Social Component

b

RESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE Optimization results, 2D NUCs

• • • • • • • • • •

. .

2D 16-QAM

• •

2D 64-QAM

2D 256-QAM

· · · · · · ·

Conclusions

- Non-Uniform Constellations were designed for the DTMB standard.
- With the proposed constellations we improve the performance of DTMB standard: robustness, spectral efficiency.
- <u>A generic algorithm to design Non-Uniform Constellations is</u> proposed.
 - Capacity Maximization.
 - Particle Swarm Optimization algorithm.

The **Future Belongs** to those who prepare for it today.

Thank You!

If you can't fly then run, If you can't **run** then **walk**, If you can't walk then crawl, But whatever you do, You have to keep moving forward.

- Martin Luther King Jr.

The **Future Belongs** to those who prepare for it today.

If you can't **fly** then **run**, If you can't run then walk, If you can't walk then crawl, But whatever you do, You have to keep moving forward.

- Martin Luther King Jr.

"The future of television is to stop thinking of television as television."

- 1985 Nicholas Negroponte

RESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE Constelaciones No-Uniformes

(NUC)

· · ·

• •

X: alfabeto de símbolo. μ: forma de la constelación.

Capacity vs SNR

1.5

1.0

Designed 2D-NUCs

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Designed 2D-NUCs

EXAMPLE ARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE NUCs design criterions for DTMB standard

 $C_B = f(X, \mu, SNR)$

X	16 -QAM				64 -QAN		256 -QAM		
FEC	0.4	0.6	0.8	0.4	0.6	0.8	0.4	0.6	0.8
SNR (dB)	7.75	9.95	12.45	11.85	14.70	17.68	16.50	20.20	23.55

