

#### MODELLING an H.264/AVC DECODER USING FPGA.

Eng. Orlando Landrove.

November, 2014

#### Introduction (I)

- Cuba is involved in the process of deploying Digital TV (DTV).
- LACETEL is leading the technology transference process.
- Solid steps to Technology Independence.

#### Introduction (II)

#### Coding and decodind video. DTV chain.



#### Introduction (III)

ISO/IEC 14496-10 (H.264/AVC o MPEG-4 Part

10).

#### Nowadays is the most deployed codec for High Definition TV.

**RESEARCH & DEVELOPMENT TELECOMMUNICATION'S INSTITUTE** LaceleL Introduction (IV) > Mature codec, plenty of scientific documentation, free standard document, free and well organized reference software. Existence of H.264/AVC analyzer and player softwares.





# TO DESIGN AND IMPLEMENT AN IDEAL MODEL OF AN H.264/AVC DECODER USING FPGA.

#### Deploying (I)

Reference library, version 18.4

- Software described in C language.
- It is the official reference software of the H.264/AVC standard for knowledge and guide.

#### Deploying (II)

#### Software compiled in Microsoft Visual Studio. Tested by Elecard 2.1



II DTV International Forum

19 =

15



#### Deploying (III)

### ML507 developIment board, from Xilinx. FPGA Virtex 5. PowerPC embedded microprocesor.



#### Deploying (IV)

- Modification y optimization of the reference software.
- Addition of read and write features from Compact Flash memory, where are stored the input and output files of the system.



#### Deploying (V)

H.264/AVC coded video as input of the decoder model. The process gives as result a decompressed file stored in Compact Flash.

SYSTEM INPUT. H.264/AVC CODED VIDEO. MICROPROCESSOR SYSTEM. H.264/AVC DECODER MODEL. SYSTEM OUTPUT. DECOMPRESSED VIDEO IN CbCr FORMAT.

II DTV International Forum

11/20

#### **Deploying (VI)** Test of results. Video input consistent with H.264/AVC standard. Elecard 2.1 software.



#### **Deploying (VII)** Test of results. Video ouput played with YUV software viewer.

| SIEMENS | yuv viewer                                                                |          |
|---------|---------------------------------------------------------------------------|----------|
|         | D:\test_dec.yuv                                                           | <b>*</b> |
|         | parameters   type : YUV 4:2:0 (IYUV)   resolution : 720 x 480   rate : 30 |          |
|         |                                                                           |          |

#### Conclusions(I)

The use of embedded microprocessors into FPGA is a way to build an ideal model of an H.264/AVC decoder.

#### Conclusions(II)

- Reference software written in C is an important part to H.264/AVC standard documentation.
- Despite the proposed model is not ready to real time application, it does support future optimizations with solid stepflow. 15/20

**Conclusions (III)** RESEARCH & DEVELOPMENT TELECOMMUNICATION'S INSTITUTE

The proposed model gives the system the guide to achieve real time process and also become the reference for designing and optimization of internal blocks.

#### Recommendations(I)

Use hardware/software co-designs to categorize and optimize those blocks who need basic or fast processing. Redifine each one by C language or HDL designs. **Recommendations(II)** 

Insert timer features for exact time management. Also modules for display decoded frames, like VGA or DVI interfaces.



## DIGITAL TELEVISION LABORATORY





