

Non-Uniform Constellation for DTMB system

Authors: Eng. Ernesto Fontes Pupo. MSc. Eng. Reinier Díaz Hernández. Eng. Yoania Acosta Cintado

07/11/2017

Lacelel RESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE Outline

- Introduction
- Fundamentals of Channel Capacity
- DTMB system model
- Non-Uniform Constellations (1D vs. 2D)
- Design principles
- Simulation results
- Validation and analysis of results.
- Conclusions

Trends in Broadcasting standards physical layer

Multiple Services over a single broadcast channel

Efficient channel utilization (power, capacity, coverage)

Digital TV and multimedia broadcast

Convergence of Broadcasting and Broadband Communications

RESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE DTMB channel coding and modulation

UC: Uniform Constellation

RESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE Non-Uniform Constellation (NUC)

• •

X: Symbol alphabet size.

 μ : Constellation geometrical shape.

RESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTEDesign principle of NUCs

RESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE Optimization algorithms

Dimensions		Constellations			
		4-QAM	16-QAM	64-QAM	256-QAM
DOFs	1 D	0	1	3	7
	2D	0	6	30	126

RESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE Optimized constellations – 2D NUCs

• • • • • • •

• • •

16-QAM

• • • • • • • •

• • • • • •

•••

64-QAM

256-QAM

· · · · · · ·

Results validation

 SNR Gain (dB) (Robustness) Capacity gain (bit/s/Hz)

EXAMPLE ARESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE SNR Gain of 2D NUCs for 64-QAM

Incerel RESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE SNR Gain of 1D/2D NUCs over UCs

Incerel RESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE SNR Gain of 1D/2D NUCs over UCs

RESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE SNR Gain of 1D/2D NUCs over UCs

RESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE Capacity Gain of NUCs over UC for DTMB

Lacelel RESEARCH & DEVELOPMENT TELECOMMUNICATIONS INSTITUTE

Conclusions

- Different optimization algorithms were implemented for the design of 1D and 2D NUCs.
- SNR Gains of designed NUCs are similar to those in nextgeneration broadcasting standards.
- Minimum SNR for optimal reception of DTMB system can be lowered by at most 1.1dB, with the application of NUCs.
- In order to approach efficiency of the state-of-the-art broadcasting standard, other techniques should be considered such as the design of better performance FEC codes.

Thank You!